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Extended MPEG Video Format for Efficient Dynamic Voltage
Scaling

Kwanhu BANG†, Sung-Yong BANG†, Nonmembers, and Eui-Young CHUNG†a), Member

SUMMARY We present an extended MPEG video format for efficient
Dynamic Voltage Scaling (DVS). DVS technique has been widely re-
searched, but the execution time variation of a periodic task (i.e. MPEG
decoding) is still a challenge to be tackled. Unlike previous works, we fo-
cus on the data (video stream) rather than the execution code to overcome
such limitation. The proposed video format provides the decoding costs
of frames to help the precise prediction of their execution times at client
machines. The experimental results show that the extended format only
increases the data size less than 1% by adding about 10 bits representing
the decoding cost of each frame. Also, a DVS technique adjusted for the
proposed format achieves 90% of efficiency compared to the oracle case,
while keeping the run time overhead of the technique negligible.
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1. Introduction

In ubiquitous era, the demand for portable computing and
communication devices has been rapidly increasing. One of
their most important metrics is power consumption. ITRS
(International Technology Roadmap for Semiconductors)
predicts that portable devices implemented with low oper-
ating power (LOP) process technology will consume power
8 times more than the required specification without any
power management scheme in 2018 [1]. For this reason, the
power management scheme is an essential feature of con-
temporary portable devices and many of them are tailored
to the video application, since it is one of the most popular
applications of portable devices. Dynamic Voltage Scaling
(DVS) technique is one of the most effective power man-
agement schemes and has been extensively researched for
video decoding. Simply speaking, DVS is a technique to
schedule voltage/frequency pairs for a task (or tasks) to be
executed without violating the given deadline. In case of
video decoding, we can model it as a single task and its ex-
ecution time varies depending on the frame characteristics.
Also, there are several real time constraints such as frame
decoding rate. The common challenge of DVS technique
for video applications is how precisely estimate the decod-
ing time of the given video stream, since the exact estima-
tion of an idle period (i.e. the difference between the dead-
line and the execution time) can be utilized for an optimal
voltage/frequency scheduling. In this letter, we only focus
on the DVS techniques developed for video applications, es-
pecially for MPEG video decoding.
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Several DVS techniques for MPEG video decoding
were proposed. In [2] and [3], they predicted the decod-
ing time of a frame based on the ratio of idle period and
busy period experienced in the recent past. On the other
hand, authors in [4] predicted the decoding time using the
encoded data size. In [5], they predicted the decoding time
in the unit of group of pictures (GOP) which consists of
several frames using the frame types and sizes. Authors
in [6] predicted the decoding time in further fine-grained
level. They partitioned the execution code of a frame de-
coding into several steps and classified them into two cat-
egories — frame-dependent and frame-independent. They
predicted the decoding time only for the frame-dependent
steps, while considering a constant decoding time for each
frame-independent step. They further improved their tech-
nique in [7] by decomposing the operations into memory
bound operations and CPU bound operations using a perfor-
mance monitoring unit (PMU). Such decomposition further
exploited idleness for the memory bound operations. Many
of them suffered from the prediction accuracy, since they
predicted the decoding time based on the recent history or
indirectly related parameters.

Unlike these works, authors in [8] focused on the data
(video stream) itself rather than the execution code (i.e.
video decoder). In other words, they required the contents
providers to deliver the decoding time information with the
corresponding video stream. The basic rationale of this
method is to reduce the uncertainty of decoding time which
is the major obstacle of other previous works. Even though
the contents providers should perform more work to pro-
vide such information, many end users (from a few to mil-
lions depending on the popularity of the contents) can be
benefited by saving the energy consumed by their portable
devices. However, the technique requires the modification
of the MPEG decoder to utilize such information for DVS
and raises the compatibility issue. Also, they did not ad-
dress any implementation details to combine the decoding
time information with the video stream.

In this letter, we propose an extended MPEG format
which complies with the technique proposed in [8]. Notice
that the newly introduced attributes in the extended MPEG
format are specified in the user-defined fields, thus the video
stream with new attributes can be still decoded by the origi-
nal MPEG decoder by discarding these attributes. The pro-
posed format provides more information for efficient DVS,
while keeping the backward compatibility with the original
MPEG decoder.
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The remainder of this letter is organized as follows.
Target DVS technique is described in Sect. 2. In Sect. 3, an
extended MPEG format for DVS is presented. In Sect. 4,
an extended MPEG decoder for the target DVS technique
is explained. Simulation environment and Experimental re-
sults are shown in Sect. 5. Finally, conclusions are given in
Sect. 6.

2. Target DVS Technique

This section is devoted to the summary of the technique pro-
posed in [8] which is our target DVS technique to show the
effectiveness of video format extension. We simply call this
technique the CP-DVS (Contents Provider-assisted DVS) in
this letter. Even though the proposed format extension can
be incorporated with any other DVS techniques, we focus
on the technique, since authors in [8] clearly specified the
necessary attributes for their techniques. Notice that our ob-
jective is not to propose a new DVS technique, but to pro-
pose an extended video format that carries more information
necessary for the precise execution time prediction.

CP-DVS represents the decoding time of a single frame
in a relative manner. More precisely, it normalizes the
execution time (decoding time) of each frame to that of
the first frame. This helps to decouple the decoding time
from the architecture-dependent characteristics by assuming
that the decoding time variation according to the architec-
ture changes can be modeled as a simple piece-wise linear
model. This is very important, since many client machines
(end users) will have different architectures from the refer-
ence machine of the contents provider. In other words, the
linear scaling of decoding time would be enough to over-
come the various architecture types. For this purpose, CP-
DVS defines “decoding cost” which is the decoding time of
each frame normalized to that of the first frame. It also de-
fines “best decoding cost” and “worst decoding cost” which
are the smallest and the largest decoding cost among all the
frames in the given video stream, respectively.

The decoding cost, best decoding cost and worst de-
coding cost are obtained during the characterization pro-
cess by the contents provider at the reference machine. The
contents provider should have a customized MPEG encoder
which adds those parameters to the given video stream. The
best decoding cost and worst decoding cost are selected
from the entire video frames, while the decoding cost is
given to each frame.

The client machine also needs an MPEG decoder cus-
tomized for CP-DVS. It first builds two tables called scal-
ing table and DVS table, respectively. The number of rows
in each table is the difference of worst decoding cost and
best decoding cost divided by the unit of resolution which
trades off the size of table and the accuracy of execution
time prediction. The scaling table translates the decoding
cost at the reference machine into the decoding cost at the
client machine (called actual decoding cost) by defining a
parameter called scaling factor. It is the ratio of the decod-
ing cost at the client machine over the decoding cost at the

reference machine. The actual decoding cost is the prod-
uct of the scaling factor and the decoding cost given by the
frame to be decoded. The scaling factor of each row at the
scaling table is initially unknown. Whenever each frame
decoding is started, the row corresponding to its decoding
cost is selected to check its scaling factor is unknown (the
Check Phase). If it is already known, DVS table is used to
select optimal voltage/frequency pair (the DVS Phase). Oth-
erwise, CP-DVS MPEG decoder decodes the frame at the
full speed and measures the decoding time, then it computes
the scaling factor by the ratio of the measured value over
the decoding time of the first frame at the client machine
(the Learning Phase). Each row of the DVS table has three
entries — voltage, frequency, and threshold. The threshold
value means the corresponding voltage and frequency pair
is optimal when the actual decoding cost is larger than the
threshold value. Further details can be found at [8].

3. Extended MPEG Format

Figure 1 shows the hierarchy structure of MPEG-2 video
format [9]. As shown in Fig. 1, MPEG-2 video format
consists of four-level hierarchies. Each level has a header
field which includes the necessary information for decod-
ing. Also, each level has an extension field and/or a user
data field. These fields can be utilized for storing the ad-
ditional information such as decoding cost for DVS. Notice
that we can choose the levels depending on the controlling
granularity of DVS. In this work, we utilize the sequence
level and picture level to control the voltage/frequency pairs
on a per-frame basis using CP-DVS. However, other fields
can be also utilized with other DVS techniques if necessary.
For instance, GOP-level header or user data field can be uti-
lized in corporation with the technique in [5]. It is also worth
to mention that the similar extension is possible with video
formats such as H.264 which provides a higher compres-
sion rate than MPEG-2, since most of recent video formats
are similar to the structure shown in Fig. 1. Note that the se-
quence header (shaded by the gray color in Fig. 1) should be
extended to keep the global information without any option,
while the GOP-level header, picture-level header or slice-
level header (dotted by the gray color in Fig. 1) can be se-
lectively extended depending on the granularity of the target

Fig. 1 The hierarchy structure of MPEG-2 video format.
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Table 1 The extended attributes of sequence header.

Sequence header field Number of bits

sequence header code 32
horizontal size value 12

vertical size value 12
aspect rate code 4

................ ...
decoding time first 9 and above
decoding cost best 9 and above

decoding cost worst 9 and above

Table 2 The extended attribute of picture header.

Picture header field Number of bits

picture start code 32
temporal reference 10
picture coding type 3

vbv delay 16
................ ...

current decoding cost 9 and above

DVS policy. CP-DVS chooses the picture-level to schedule
optimal voltage and frequency pair per-frame basis.

The extended fields and user data are declared as
pointer variables in MPEG-2 data structure. These pointer
variables are initially assigned to NULL, thus original
MPEG-2 decoder ignores these fields when they are decod-
ing a given video stream. In our case, we allocate several
bits to these pointer variables to capture the information nec-
essary for CP-DVS. The number of bits assigned to each
field will trade off the increase of video data size and accu-
racy. We will show the trade-off analysis in Sect. 5. Table 1
and Table 2 show the sequence header and picture header in-
cluding the extended attributes, respectively. For sequence
header, we allocate three attributes — the first frame decod-
ing time (decoding time first in Table 1), the best decoding
cost (decoding cost best in Table 1), and the worst decod-
ing cost (decoding cost worst in Table 1). Also, we allo-
cate a single attribute called current decoding cost to store
the decoding cost of the corresponding frame. The reason
that the number of bits for new attributes are determined as
“9 and above” will be explained in Sect. 5. The MPEG de-
coder should be appropriately modified to understand these
attributes and include the target DVS policy.

Note that the header extension does not cause any com-
patibility issue with the MPEG decoders which support the
original MPEG video format, since the extended fields are
just ignored by these decoders.

4. Extended MPEG Decoder

We extended the open source MPEG codec from [10] and
[11] to implement the CP-DVS with the proposed format.
Figure 2 shows the pseudo-code of the MPEG decoder cus-
tomized for CP-DVS. The underlined codes are inserted to
the original decoder for this purpose. Initialization is per-
formed by function mpeg2Init() on line 3. In addition to the
initializations done by original MPEG decoder, out imple-

1CPDVS (SCALINGTABLE *scalingTable, DVSTABLE *dvsTable) {
2 /* initialization of decoder */
3 mpeg2Init();
4

5 /* MPEG-2 decoding loop */
6 while(!VIDEO_END) {
7 /* read video data from video clip */
8 readVideoData(buffer, fileVideoClip);
9

10 /* MPEG-2 header decoding */
11 if(SEQUENCE_HEADER_CODE) { // for sequence header
12 getSequenceHeaderInfo();
13 getSequenceCostInfo();
14 /* Initialization Phase */
15 constructScalingTable(scalingTable, worstCost, bestCost);
16 }
17 if(GOP_HEADER_CODE) { // for GOP header
18 getGOPHeaderInfo();
19 }
20 if(PICTURE_HEADER_CODE) { // for picture header
21 getPictureHeaderInfo();
22 getPictureCostInfo();
23

24 if(!FIRST_FRAME) {
25 if((scalingFactor = checkPhase(pictureCost))>0) {
26 /* DVS phase */
27 NEED_LEARNING = FALSE;
28 DVSPhase(scalingFactor, pictureCost);
29 } else {
30 NEED_LEARNING = TRUE;
31 DVS(MAX_SPEED);
32 }
33 }
34 }
35

36 /* measure decoding time */
37 startTime = getTime();
38 while (!PCITURE_END){
39 if(SLICE_HEADER_CODE) { // for slice header
40 getSliceHeaderInfo();
41 }
42 mpeg2BlockDecoding(buffer);
43 }
44 endTime = getTime();
45 frameDecodingTime = endTime - startTime ;
46

47 if(FIRST_FRAME) {
48 /* Compulsory learning phase */
49 compulsoryLearningPhase(scalingTable, frameDecodingTime);
50 constructDVSTable(dvsTable, frameDecodingTime);
51 firstFrameDecodingTime = frameDecodingTime;
52 } else {
53 if(NEED_LEARNING == TRUE)
54 /* Learning phase */
55 learningPhase(frameDecodingTime);
56 }
57 frameDecodingTime = 0;
58 }
59}

Fig. 2 The pseudo-code of the extended MPEG decoder.

mentation sets the processor with its maximum voltage and
frequency. Then, the extended code performs the decoding
iteratively from line 6 to line 58. We will describe each code
section inside the while loop more in detail.

4.1 Header Parsing

This part is from line 7 to line 22 in Fig. 2. First, CP-DVS
reads video data (from line 7 to line 8). Then, CP-DVS
reads the sequence header including the extended attributes
described in Sect. 3 (from line 11 to line 13). After that,
the scaling table mentioned in Sect. 2 is constructed using
these attributes (at line 15). Then, CP-DVS iteratively reads
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each GOP header and each picture header nested in a GOP
(from line 17 to line 22). The GOP header has nothing for
CP-DVS because we extended the MPEG format per-frame
basis. The attribute “current decoding cost” mentioned in
Sect. 3 is obtained from each picture header (at line 22).

4.2 Voltage and Frequency Setting

This part is from line 24 to line 34 in Fig. 2. For the
first picture header, CP-DVS skips this part and and starts
frame decoding. Note that the processor is already set to its
maximum voltage and frequency at the initialization phase.
In the other cases, CP-DVS first checks there is an appli-
cable scaling factor for the current decoding cost (at line
25). If the scaling factor exists, CP-DVS unsets a flag
called “NEED LAERNING” for the learning phase and ad-
justs the voltage and the frequency with the corresponding
DVS table information (from line 26 to line 28). The func-
tion “DVSPhase()” on line 28 performs the voltage and fre-
quency setting in our implementation. If the scaling factor
does not exist, the flag is set and CP-DVS sets the processor
with the maximum speed (from line 30 to line 31).

4.3 Actual Frame Decoding Time Measurement

This part is from line 36 to line 45 in Fig. 2. After CP-DVS
reads a picture header, it decodes the corresponding frame
while measuring the decoding time of the frame (from line
36 to line 45). The measured time is used to update the
scaling table and the DVS table for the compulsory learning
phase and learning phase at each end of frame decoding.

4.4 Learning Phase

This part is from line 47 to line 57 in Fig. 2. When the
first frame is decoded, the compulsory learning phase is
performed (at line 49), and the DVS table is constructed
using the actual decoding time of the first frame (at line
50). Next, the time is saved to calculate the scaling fac-
tor (at line 51). For the other frames, CP-DVS checks the
flag for the learning phase and performs the learning phase
if “NEED LEARNING” has been set (from line 53 to line
55). At the end, the variable for the actual decoding time is
reset to zero to be used at next frame (at line 57).

5. Experimental Results

We conducted several sets of experiments using a cycle-
accurate simulator called MaxSim from ARM [12].
MaxSim provides not only the simulation kernel, but also
simulation libraries including ARM processors. For each set
of the simulation, we used the video clips listed in Table 3.
Each video clip consists of 60 frames.

We first focus on the bit-width optimization of the new
attributes introduced by the extended video format. To avoid
the heavy computations of floating-point numbers, we im-
plemented the CP-DVS algorithm in the extended MPEG

Table 3 Video clips used for simulations.

Video clip Resolution 1 Resolution 2

bigbend QSIF (160 × 120) SIF (320 × 240)
linda QSIF (160 × 120) SIF (320 × 240)

game pov QSIF (160 × 120) SIF (320 × 240)
museum QSIF (160 × 120) SIF (320 × 240)
elevator QSIF (160 × 120) SIF (320 × 240)

RedsNightmare QSIF (160 × 120) SIF (320 × 240)

Fig. 3 The computation accuracy for selecting optimal voltage and
frequency pair as a function of bit-width.

Table 4 Computational overhead and size increase by the extended
MPEG format.

Overhead
Computational Size

overhead increase

Video clip
Resolution Resolution

QSIF SIF QSIF SIF
bigbend 1.4069% 0.5875% 0.0017% 0.0003%

linda 1.1515% 0.1818% 0.0208% 0.0068%
game pov 1.1042% 0.4336% 0.0058% 0.0005%
museum 0.9186% 0.3447% 0.0038% 0.0013%
elevator 1.0120% 0.3699% 0.0036% 0.0010%

RedsNightmare 1.0440% 0.2986% 0.0219% 0.0075%

decoder by using the fixed-point operations. Figure 3 shows
the computation accuracy for selecting optimal voltage and
frequency pair as a function of bit-width when we use the
fixed-point operations against the floating-point operations.
As shown in Fig. 3, 9-bit is enough for each attribute to at-
tain the reasonable accuracy (higher than 90%).

Next, we evaluated the computational overhead of CP-
DVS technique with the extended format when the bit-width
of each new attribute is 13. The results are shown in Table 4
with the size increase of each video clip due to the new at-
tributes. From Table 4, it is obvious that the proposed video
format slightly incurs both the computational overhead and
the size overhead, meaning that it satisfies the most essen-
tial properties required to the DVS techniques. Also, both
computational and size overheads decrease as the picture
resolution increases, because the number of attributes is un-
changed while the data size and its decoding time increase.

Finally, we measured the energy saving achieved by
the proposed video scheme with CP-DVS and the results
are shown in Fig. 4. We used the power numbers, volt-
age/frequency pairs, and delays provided by [13]. As shown
in Fig. 4, CP-DVS with the extended MPEG video format
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Fig. 4 Comparison of normalized energy consumption between CP-DVS
and oracle-DVS.

consumed about 60%(50%) less energy than the original
MPEG decoder for QSIF (SIF). Also, it is about 90% of
efficiency compared to the oracle DVS. We achieved the en-
ergy saving similar to the results reported from [8], meaning
that the proposed video format is well implemented without
any major overhead and enables CP-DVS to behave like the
oracle DVS.

6. Conclusions

In this letter, we proposed an extended MPEG video format
which can be incorporated with CP-DVS or any other DVS
techniques. We define the new attributes in the extended
format and their optimal bit-width is proposed to minimize
the computational overhead by using the fixed-point oper-
ations. The experimental results show that the proposed
method achieves the energy saving similar to the results re-
ported from CP-DVS, while the overheads caused by the
proposed method are negligible. Finally, the proposed tech-
nique can be applicable to other video formats for DVS.
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